A Bijective Proof of Shapiro's Catalan Convolution
نویسندگان
چکیده
We present a bijective proof of Shapiro’s convolution formula involving Catalan numbers of even index. As a corollary, we give a new interpretation of the Catalan numbers.
منابع مشابه
A Bijective Proof of Garsia's q-Lagrange Inversion Theorem
A q-Lagrange inversion theorem due to A. M. Garsia is proved by means of two sign-reversing, weight-preserving involutions on Catalan trees.
متن کاملInterpre'tation bijective d'une re'currence des nombres de Motzkin
The purpose of this note is to give a combinatorial proof of the three-term linear recurrence for Motzkin numbers. The present work is inspired by R emy’s combinatorial proof of the linear recurrence for Catalan numbers (RAIRO Inform. Theor. 19(2) (1985) 179) and the more recent proof given by Foata and Zeilberger (J. Combin. Theory Ser. A 80(2) (1997) 380) for Schr; oder numbers (Z. Math. Phys...
متن کاملA Refinement of the Formula for k-ary Trees and the Gould-Vandermonde's Convolution
In this paper, we present an involution on some kind of colored k-ary trees which provides a combinatorial proof of a combinatorial sum involving the generalized Catalan numbers Ck,γ(n) = γ kn+γ ( kn+γ n ) . From the combinatorial sum, we refine the formula for k-ary trees and obtain an implicit formula for the generating function of the generalized Catalan numbers which obviously implies a Van...
متن کاملEnumeration of connected Catalan objects by type
Noncrossing set partitions, nonnesting set partitions, Dyck paths, and rooted plane trees are four classes of Catalan objects which carry a notion of type. There exists a product formula which enumerates these objects according to type. We define a notion of ‘connectivity’ for these objects and prove an analogous product formula which counts connected objects by type. Our proof of this product ...
متن کاملOn the equivalence problem for succession rules
The notion of succession rule (system for short) provides a powerful tool for the enumeration of many classes of combinatorial objects. Often, different systems exist for a given class of combinatorial objects, and a number of problems arise naturally. An important one is the equivalence problem between two different systems. In this paper, we show how to solve this problem in the case of syste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 21 شماره
صفحات -
تاریخ انتشار 2014